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11 ABSTRACT12
13

The expected crash frequency is the long-term average crash count for a specific site. It is ex-14

tensively used to systematically evaluate the crash risk associated with roadway elements. To15

estimate the expected crashes, the Empirical Bayesian (EB) approach is typically employed. The16

EB method is a computationally convenient approximation to the Full Bayesian (FB) method,17

which gained popularity due to its simple interpretation, computational efficiency, and the abil-18

ity to account for the regression to the mean bias. However, the common EB method used in19

traffic safety analysis is only applicable when the traditional Negative Binomial (NB) model is20

used. The NB model, however, is not appropriate when data is highly dispersed, skewed, or21

has a large number of zero observations. The Negative Binomial-Lindley (NB-L) model is a22

mixture of the NB and Lindley distributions and has shown superior fit compared to the NB23

model, especially when the dataset is characterized by excess zero observations. Even though24

several studies have used the NB-L in developing crash prediction models, the application of the25

NB-L in other safety-related tasks (e.g., hot spot identification) is largely neglected. This study26

proposed a framework to develop the EB method for the NB-L model and subsequently esti-27

mate the expected crash values.A comparison between the EB and FB estimates was performed28

to validate the approximation framework in general. The results indicated that the proposed EB29

framework is able to estimate expected crashes with comparable precision to the FB estimate, but30

with much less computational cost. In addition, a site ranking analysis using the EB estimates31

was conducted to validate the proposed approximation method in safety studies. However, it32

should be noted that any other type of safety analysis that requires access to the expected crashes33

can benefit from the proposed EB method. This study concluded that the proposed EB frame-34

work can properly approximate the underlying FB approach and can reasonably be considered35

as an alternative to the traditional EB formula derived from the NB model. The results of this36

study can help to extend the application of the advanced predictive models beyond predicting37

crashes to other safety-related tasks, with no additional computational efforts.38

39

1. Introduction40

The roadway safety management process involves multiple steps that are designed to monitor and reduce crash41

frequencies on existing roadways (Part, 2010). Of these steps, hot spot identification and safety effectiveness evaluation42

are two key approaches in safety evaluation and analysis. Hot spot identification identifies sites that can benefit the most43

from safety treatments. Safety effectiveness evaluation (e.g., before-after analysis, cross-sectional analysis) evaluates44

how safety has changed because of one or more specific treatments implemented to reduce the crashes. Both analyses45
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require reliable and stablemeasures to quantitatively evaluate the crash risk associated with a roadway entity in a certain46

time period. There are three main steps associated with each of the aforementioned analyses. The first step involves47

developing a crash prediction model (also referred to as crash-frequency model). Crash prediction models are the main48

tool to predict crash frequencies and identify crash contributing factors. In the second step, the crash prediction models49

are used to assess the crash risk associated with each roadway element. The evaluated crash risk then can be used to50

determine the likelihood of crash occurrence for each specific site, as a function of site characteristics (i.e., explanatory51

variables), in a certain time period. The final step involves ranking the sites in decreasing order based on the assessed52

crash risk (in case of hot spot identification), or determining the efficacy of the countermeasure(s) given the assessed53

crash risk before and after implementing the treatment.54

The Negative Binomial (NB) is the most common statistical model to develop crash prediction models and estimate55

crash frequencies (Lord et al., 2021; Lord and Mannering, 2010; Mannering and Bhat, 2014). As opposed to the56

Poisson distribution which assumes the mean and variance of crash observations are equal, the NB distribution allows57

the variance of the response variable to be greater than the mean by using an additional parameter (referred to as over-58

dispersion parameter). Although research studies showed that the NB model addresses over dispersion commonly59

observed in crash data, this model does not necessarily account for issues related to other unique characteristics of60

crash data. In particular, crash datasets are often characterized by excess zero observations or low sample mean.61

The NB distribution is not flexible enough to deal with abundance of zero observations in the data (Geedipally et al.,62

2012). In addition, the NB model will output biased results as the sample mean goes lower (Lord, 2006). Different63

statistical models have been proposed by safety researchers to overcome limitations of the NB model. Poisson log-64

normal (Song et al., 2006; Park and Lord, 2007; Khazraee et al., 2018; Shirazi and Lord, 2019), Poisson-generalized65

inverse Gaussian (Zha et al., 2016; Zou et al., 2013), Conway-Maxwell-Poisson (Lord et al., 2010; Abdella et al.,66

2019), Semiparametric NB model (Shirazi et al., 2016), Poisson-Tweedie (Debrabant et al., 2018; Saha et al., 2020),67

Generalized Additive Models (Xie and Zhang, 2008), and Negative Binomial-Lindley (NB-L) (Zamani and Ismail,68

2010; Lord and Geedipally, 2011; Geedipally et al., 2012; Shirazi et al., 2017; Shaon et al., 2018; Khodadadi et al.,69

2021) are just a few examples of advanced count models developed over time to overcome or alleviate the limitations of70

the NB model. NB-L in particular is the subject of interest in this study. The NB-L model is a mixture of the negative71

binomial and Lindley distribution. This model was first proposed by Zamani and Ismail (2010), and then used in72

multiple research fields dealing with sparse count data modeling including crash data analysis (Lord and Geedipally,73

2011; Geedipally et al., 2012; Shaon et al., 2018; Khodadadi et al., 2021). The NB-Lmodel offers extra flexibility using74

the Lindley distribution, resulting in a more powerful tool to fit to crash datasets (Shirazi et al., 2016). In particular,75

compared to the traditional NBmodels, the NB-L shows a better fit when a crash dataset contains many zero responses,76

or exhibits high dispersion, large skewness or long tail (Shirazi et al., 2017).77
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The three stepsmentioned above (i.e., developing crash predictionmodel, crash risk evaluation, and ranking/before-78

after analysis based on the evaluated crash risk) have been fully investigated for the well-known NB model. However,79

despite the superiority of the NB-L, no study has examined the application of the NB-L distribution or its general-80

ized linear model (GLM) beyond the first step (predicting crashes). This study fills this research gap by deriving the81

equations to estimate the expected crash frequency for the NB-L model based on Full Bayesian (FB) and Empirical82

Bayesian (EB) framework. Therefore, the primary objectives of this study are to (1) develop an EB framework to83

calculate the expected crash values for the NB-L models, (2) compare the EB and FB expected values to determine84

if the proposed EB framework properly approximates the underlying FB paradigm, and (3) test the application of the85

NB-L and its EB estimates of the expected crashes in other safety-related analyses (site ranking in this study) to ensure86

the applicability of the proposed framework.87

2. Background88

The NB-L distribution has been used by researchers in various fields, including safety analysis (crash prediction89

models). Lord and Geedipally (2011) examined the application of the NB-L distribution in highway safety. They90

applied both the NB and NB-L distributions to simulated and empirical sparse datasets. They found that the NB-L91

outperforms the traditional NB distribution. To extend the application of NB-L in safety analysis, Lord et al. (2012)92

introduced a generalized linear NB-L model (NB-L GLM) to link the crash frequencies to the site characteristics.93

The regression approach has been employed in numerous transportation-related studies to estimate the relationships94

between the response variable and influential factors (Safaei et al., 2021b; Darzian Rostami et al., 2020; Aman et al.,95

2021; Aman and Smith-Colin, 2020; Safaei et al., 2021a; ?; Asgharpour et al., 2021). Lord et al. (2012) observed96

that the NB-L GLM provides a better fit compared to the traditional NB GLM when analyzing a sparse or highly-97

dispersed dataset. Given the superiority of the NB-L over the traditional count models, different parameterizations98

of the NB-L model have been proposed, discussed, and applied in the literature. Two-parameters NB-L (Zamani and99

Ismail, 2010), three-parameters NB-L (Denthet et al., 2016), four-parameters NB-L (Tajuddin et al., 2020), Negative100

Binomial weighted-Lindley (NB-WLindley) (Khodadadi et al., 2022), and Negative Binomial-Lindley with different101

variance and dispersion structure (Khodadadi et al., 2021) are a few examples of the more advanced and more complex102

count models that are recently proposed to provide even greater flexibility to the original NB-L model.103

Sometimes crash risk is quantified by criteria such as short-term crash frequency, crash rate, crash severity, or104

crash cost (Miaou and Song, 2005; Huang et al., 2009; Guo et al., 2020); however, ignoring the influential crash fac-105

tors (e.g., Annual Average Daily Traffic, roadway characteristics) couldmake thesemethods inefficient. In addition, the106

uncertainty associated with using the raw crash data could reduce the accuracy of the results, especially for long-term107

planning processes. The limitations associated with using the historical crash records alone led the researchers and108
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transportation agencies to develop statistical approaches to more accurately predict the crash risk (i.e., expected crash109

risk); they then used these approaches to rank the sites by the magnitude that their estimated crash risk exceeded the110

normal crash risk, which is estimated using sites with similar characteristics (Huang et al., 2009). The expected crash111

frequency is the long-term average crash count for a specific site. Considering the expected number of crashes in hot112

spot identification can overcome or minimize issues such as the regression-to-the-mean (RTM) bias (Hauer, 1997) or113

limited sample size (Miaou and Lord, 2003). Furthermore, given that the expected crash frequency uses both observed114

crash data and the number of crashes estimated from a crash prediction model, it can also account for the fundamentally115

non-linear relationship between the crash frequency and explanatory variables, the unobserved heterogeneity among116

the sites (Lord and Mannering, 2010), and the uncertainty associated with parameters of the underlying regression117

model (Miaou and Lord, 2003). The FB and EB are the two methods that are applied to estimate the expected crash118

frequencies. The FB method requires access to the hierarchical representation of the underlying predictive model in119

order to draw random samples from the posterior distribution of the parameters of interest. The hierarchical repre-120

sentation of Bayesian models makes the FB approach more flexible than other methods since it eliminates the need121

for the closed form representation of the model. Hierarchical models are frequently used in crash data analysis. One122

of the main advantages of the hierarchical models is the ability to incorporate relevant prior knowledge and common123

beliefs about the parameters into the modeling process in a natural probabilistic way. The FB method has broadly been124

used in various safety-related analyses such as estimating crash prediction models, before-and-after studies, and hot125

spot identification (Guo et al., 2019; Farid et al., 2017; Aguero-Valverde and Jovanis, 2009; Miaou and Song, 2005;126

Miranda-Moreno et al., 2013; Shirazi et al., 2017; Lan and Persaud, 2011; Persaud et al., 2010; Pu et al., 2020).127

Despite the broad applications of the FB approach, this method is often computationally intensive. In particular,128

for complex models involving a large number of observations and many variables, the FB method can be a time-129

consuming task due to the integration over the distribution of many parameters. Furthermore, the FB approach requires130

consideration of a prior distribution on all the unknown parameters. However, finding a well-reasoned and well-defined131

prior distribution for the problem in hand could be quite challenging. The EB method is a promising alternative to the132

standard FB paradigm. The EB approach is a special case of the general FB framework when some assumptions are133

simplified. Unlike the FB method where each parameter is defined as a random variable, the EB approach assumes134

that the parameters in the highest level of hierarchy are known without any uncertainty (Huang et al., 2009). The EB135

method could be thought of a computationally convenient approximation to the FB method, and has gained popularity136

among the safety analysts and transportation agencies due to its simple interpretation, computational efficiency, and137

the ability to account for the RTM bias (Miaou and Lord, 2003; Huang et al., 2009; Persaud et al., 2010; Khattak138

et al., 2018; Das et al., 2019). Despite the fact that the EB method is a reliable method to estimate the expected crash139

risks, it is just an approximation to a more general FB paradigm. First of all, the EB method does not account for the140
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uncertainty embedded in the parameters. Parameters of the crash prediction model are estimated from the observed141

crash data which are naturally subjected to uncertainty. Ignoring these uncertainties might lead to overestimating the142

precision and/or less accurate estimates (Miaou and Lord, 2003). Secondly, the EB method might be criticized for143

a double usage of the data (Huang et al., 2009; Hauer, 1997). In an ideal EB procedure, two sources of data should144

be used. One source is to develop the crash prediction model and get the predicted crash values, and another is to145

independently enrich the model with prior knowledge. However, in practice, the safety performance functions (SPF)146

are obtained from the recorded crash frequency and thus both predicted crash frequency and observed crash frequency147

are derived from the same source of information. Despite these limitations, the EB expected crash frequency is a good148

approximation for the expected values derived from the FB method as it still accounts for the RTM, can refine the149

predicted mean of an entity (Zou et al., 2013), and yields similar estimates as FB estimates with comparable precision150

but less computational cost. All these confirm that the EB approach is a proper, yet less expensive alternative compared151

to the FB method.152

The EB method has been used for the NB model where the expected crash frequency is defined as a linear combi-153

nation of the predicted crash frequency (derived from the SPF model) and the observed crash frequency (Hauer et al.,154

2002). Similarly, the EB procedure proposed in the highway safety manual (HSM) is only applicable when the tra-155

ditional NB model is being used. As mentioned earlier, different extensions of the NB model have been introduced156

to deal with problematic characteristics of crash data. As these extensions get more complex and go deeper in the157

hierarchy, the EB procedure becomes harder to implement as the closed form of such distributions are unavailable or158

hard to compute analytically. Consequently, there is a clear need to examine the application of the EB method when159

more advanced models are being used. To this end, some studies attempted to translate the EB framework for more160

complex models such as Sichel (Zou et al., 2013) or finite mixture NB (Zou et al., 2018).161

In terms of ranking procedures, generally, there are two types of ranking approaches, naive ranking and model-162

based ranking (Huang et al., 2009). The naive ranking method uses the raw crash data to make an ordered list of163

sites for hot spot identifications. The model-based ranking approaches, however, take the expected crash values as an164

indication of the crash risk (Huang et al., 2009). The expected crash values are extensively used to sort a list of roadway165

entities. However, the obtained sorted list could potentially differ among the ranking criteria since they are based on166

different measures and logics. Several model-based ranking criteria for hot spot identification have been investigated167

in the literature to better represent the stochastic nature of the crash data. Many studies have recommended ranking168

sites based on the FB or EB expected value of the Poisson mean, and they concluded that the use of posterior Poisson169

mean would result in a more reliable and more accurate order compared to the naive ranking criteria (Guo et al., 2019;170

Lee et al., 2019; Meng et al., 2020; Lan and Persaud, 2011). In the same token, Shen and Louis (1998) discussed that171

the posterior Poisson mean is an optimal choice when inferences about the expected crashes are of interest. However,172
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it might perform poorly if the rank of the expected crashes is the subject of interest. Consequently, some studies have173

attempted to directly take uncertainties in rankings into considerations and employed a Bayesian framework in ranking174

criteria as well (Laird and Louis, 1989; Miaou and Song, 2005; Liu and Sharma, 2018; Shen and Louis, 1998). The175

posterior ranking criteria (e.g., posterior expected, mode, or median rank) takes all posterior simulations into account176

for each site’s crash risk (not only the posterior mean), and then outputs a ranked list of sites for each simulation run,177

accordingly. In a comparison study between the EB and FB approach for hot spot identification, Lan and Persaud178

(2011) explored eight different ranking criteria including posterior expected, posterior mode, and posterior median179

ranking. The authors concluded that, in general, the posterior rank criteria would perform better than other model-180

based and naive ranking methods. Similar results were observed in the study done by Laird and Louis (1989). They181

also concluded that the posterior distribution of a parameter’s rank typically carries more information about the true182

ranking in comparison to the integer rank of that parameter.183

3. Methodology184

The NB-L distribution is a mixture of the NB and the one-parameter Lindley distribution. The NB-L distribution185

offers a more flexible structure with more degrees of freedom compared to the traditional NB distribution. Different186

hierarchical variations of the NB-L distribution have been introduced and analyzed (Geedipally et al., 2012; Zamani187

and Ismail, 2010; Gomez-Deniz and Calderin-Ojeda, 2017). This study used the original representation developed by188

Zamani and Ismail (2010) and the generalized linear model proposed by Geedipally et al. (2012) to derive FB and EB189

procedures. Let Yi denote the crash frequency following an NB distribution with shape parameter, pi, and rate (or over190

dispersion) parameter, �. The hierarchical expression for the NB-L generalized linear model (NB-L GLM) is defined191

as follows (Geedipally et al., 2012):192

Yi ∼ NB (pi, �); � > 0, 0 < pi < 1

pi = e−�i

�i ∼ Lindley (�i) (1)
�i = �i = e�Xi

� ∼ ��

� ∼ ��

where, � is the Lindley parameter, Xi = (1,X1,X2,...Xm) is the vector including the contributing variables for site i,193

� = (�0, �1, ..., �m) is the vector of regression coefficient to be estimated, and �� and �� are the prior distribution for194
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� and �, respectively.195

The GLM representation in Eq.(1) was suggested by Geedipally et al. (2012) as an alternative to NB-L GLM, but it196

has not yet been used for modeling due to its complexity. Note that the above NB-L GLM representation is available in197

closed-form. Therefore, this representation works well for addressing the objectives of this paper since the EB analysis198

usually requires the maximum likelihood estimates (MLE) of the parameters, which require access to the closed form199

formulation of the probability mass function (pmf). In the next section, the derivation of the expected crash values is200

discussed in detail for both FB and EB methods.201

3.1. Full Bayesian expected values202

In the FB paradigm, both parameters and hyper-parameters are assumed to follow pre-defined distributions (i.e.,203

prior distribution) which represent the underlying uncertainty in the parameters. The FB method treats all the pa-204

rameters as unknown random variables and takes all their uncertainties into account by integrating over the prior205

distributions. In the Bayesian context, either for EB or FB methods, the posterior predictive distribution is used to206

estimate the expected crash values. The posterior predictive distribution represents the distribution of the expected207

data given the observed data and predictive model. The posterior predictive distribution for an expected data point,208

yexp, given the observed value, yobs, could be written as follows:209

p (yexp|yobs) = ∫

p (yexp|
, yobs) p (
|yobs) d
 (2)

where, p (yexp|
, yobs) is the likelihood of the expected data given the observed data and model parameters (
), and210

p (
|yobs) is the posterior distribution of the parameters give the observed data. In this section, first we document211

the derivation of the posterior predictive distribution and the FB expected values for the NB model; then, the same212

procedure is extended to derive the FB expected crash frequencies for the NB-L model.213

The NB distribution itself could be re-parameterized as a continuous mixture of the Poisson and Gamma distribu-214

tions, where the Poisson mean follows a Gamma distribution. The hierarchical representation of the NB GLM with215

mean, �, and over-dispersion parameter, �, could be written as follows:216

Yi ∼ Poisson (�i)

�i ∼ Gamma (�, �∕�i)

�i = e�Xi (3)
� ∼ ��

� ∼ ��

Khodadadi et al.: Preprint submitted to Elsevier Page 7 of 25



Using the definition of the posterior predictive distribution in Eq.(2), the probability of the expected crashes, yexp,217

given the observed crash data is as follows:218

p (yexp|yobs) = ∫�
p (yexp|�, yobs) p (�|yobs) d� (4)

where, p (yexp|�) ∼ Poisson (�) and p (�|yobs) is the posterior distribution of the Poisson mean, �, which could be219

written as follows by definition:220

p (�|yobs) = ∫�,�
p (�|yobs, �,�) ��,� d(�, �) (5)

Given Eq.(4) and Eq.(5), the Full Bayesian posterior predictive distribution of the NB GLM could be written as221

follows:222

p (yexp|yobs) = ∫�
p (yexp|�, yobs)

(

∫�,�
p (�|yobs, �,�) ��,� d(�, �)

)

d� (6)

Let P and G denote the Poisson and Gamma distributions, respectively. Given the definition of the posterior223

distribution, we know that:224

p (�|yobs, �,�) ∝ P (yobs|�) G (�|�, �) (7)

Therefore, given the fact that the Gamma distribution is a conjugate prior for the Poisson distribution, Eq.(6) could225

be further simplified as follows:226

227

p (yexp|yobs) = ∫�
P (�)

(

∫�,�
G (yobs + �, 1 + �∕�) ��,� d(�, �)

)

d� (8)

Using the FB approach, instead of solving the integral or calculating the closed form representation, we can take228

the Monte Carlo Markov Chain (MCMC) approach to draw random samples from the posterior predictive distribution.229

The following steps describe the procedure to draw a random sample from the posterior predictive distribution at each230

site i:231

• Draw a random sample from the prior distributions, �� and ��; then, calculate �i;232

• Plug in the samples from the previous step in G (y + �, 1 + �∕�i), and then draw a random sample from the233

distribution. It gives us a random sample from the �’s posterior distribution;234
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• Plug in the posterior � sample from the previous step in P (�), and then draw a random sample from the dis-235

tribution. It gives us a random sample from the posterior predictive distribution of the crash frequency at site236

i.237

By repeating the hierarchical procedure described above, we can have the necessary samples from the posterior238

predictive distribution to estimate the expected crash frequency. For this purpose, we can use any measure of centrality239

(i.e., mode, mean, median) to average out the predictive distribution and achieve the expected value. Note that in the240

last step, (yexp|�, yobs) follows a Poisson distribution. The parameter of the Poisson distribution shows its mean value.241

Therefore, by drawing random samples and then taking the average, we can find the conditional expectation of � given242

the observed data, E(�|yobs). This means that if we parameterize the crash frequency as a Poisson mixture model with243

parameter �, the posterior predictive distribution would be the same as the posterior distribution of �. This concept244

will be useful when developing EB estimates for the NB-L GLM.245

Even though the NB-L has been discussed and documented in the literature, no study has yet outlined the derivation246

of expected crash values for the NB-L GLM. A similar procedure as that used in developing FB for NB GLM is also247

applicable in the case of NB-L model. Using the NB-L GLM formulation written in Eq.(1), the posterior predictive248

distribution could be expressed as follows:249

p (yexp|yobs) = ∫�,�
p (yexp|�, �, yobs)p (�, �|yobs) d(�, �) (9)

Putting the full posterior expression of � parameter in Eq.(9) , the above formulation could be re-written as follows250

(Nℬ denotes the NB distribution):251

p (yexp|yobs) = ∫�,�
Nℬ(e−� , �)

(

∫�
p (�|�, yobs) �� d(�)

)

�� d(�, �) (10)

The Lindley distribution does not have any conjugate prior; hence, the integral above cannot be further simplified.252

The following procedure should be followed to draw random samples:253

• Draw a random sample from each prior distribution, �� and ��.254

• Plug in the sample � from the previous step in p (�|�yi), and draw a random sample from the distribution. It255

gives us a random sample from posterior distribution of �.256

• Plug in the posterior � sample from the previous step and� from the first step inNℬ(e−� , �), and draw a random257

sample from the distribution. It gives us a random sample from the posterior predictive of the crash frequency258

at site i.259
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This procedure could be easily formulated and summarized in statistical software developed for MCMC analysis260

such as WinBUGS (Lunn et al., 2000), or JAGS (Plummer et al., 2016).261

3.2. Empirical Bayesian expected values262

Asmentioned in the previous section, themainmotivation behind the EBmethod is simplifying the computationally263

intensive steps of the FB procedure. Unlike the FB method where all the parameters are random variables specified264

by prior distributions, the EB method does not consider the uncertainty associated with the parameters; instead, the265

point estimate of the parameters, either maximum likelihood (MLE) or method of moment (MOM) estimates, is used266

in the highest levels of hierarchy. In the following, the EB approach for the NB model is reviewed, and then the EB267

approximation for the NB-L model is developed.268

The three-step procedure explained for the FB analysis is simplified by some approximations to obtain the expected269

crash values in the EB paradigm as follows:270

Step one - Estimate the parameters of the highest level of hierarchy.271

To obtain parameter estimates �̂ and �̂, closed form representation of the NB GLM is essential. The closed form272

expression of NB GLM is available and could be easily achieved by marginalizing � variable out:273

p (y|�, �) = ∫�
p (y|�) p (�|�, �) d� = Γ(y + �)

Γ(y + 1)Γ(�)

(

�
� + �

)�( �
� + �

)y
(11)

The above expression is the pmf of the NB distribution. �̂ and �̂ are called the marginal maximum likelihood274

estimates (MMLE) and could be simply calculated through MLE or MOM approaches.275

Step two - Derive the expected value of posterior Poisson mean.276

As mentioned before, Gamma is a conjugate prior for Poisson distribution. As a result, the posterior distribution277

of the Poisson mean, �, given the data as well as its expected value, is available in closed form (Zou et al., 2018):278

p (�|�, �, y) = Gamma (y + �, 1 + �∕�) (12)

E (�|�, �, y) = y + �
1 + �∕�

=
(

�
� + �

)

y +
(

�
� + �

)

� (13)

The above formula (Eq.(13)) is the known EB formula for the expected crash value, which is extensively used in279

safety analysis (Hauer et al., 2002). Finally, by plugging in �̂ and �̂ from the previous step in Eq.(13), the EB expected280

crash frequency for each site is calculated.281

The outlined procedure for derivation of the EB estimates for the NB GLM is also applicable in the NB-L GLM.282

Each step is thoroughly discussed in the following:283
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Step one - Estimate the parameters of the highest level of hierarchy.284

Estimating � and � requires the closed form representation of the NB-L GLM. The hierarchical representation of285

the NB-L model outlined in Eq.(1) can be expressed in closed form by marginalizing � parameter out:286

p (y|�, �) = ∫�
p (y|�, �) p (�|�) d� (14)

Solving for the above integral would result in the pmf of the NB-L GLM. It follows from the pmf of the NB-L287

distribution which was developed by (Zamani and Ismail, 2010):288

p (yi|�, �) =
e2�Xi
1 + e�Xi

(

� + yi − 1
yi

) yi
∑

j=0
(−1)j

(

yi
j

)

e�Xi + � + j + 1
(e�Xi + � + j)2

(15)

The MLEs, �̂ and �̂, could then be calculated by maximizing the likelihood (or log-likelihood) function. The289

log-likelihood function of NB-L GLM is given as follows:290

ll =
n
∑

i=1

[

log
(

� + yi − 1
yi

)

+ 2(�Xi) − log(1 + e�Xi ) (16)

+ log
(

yi
∑

j=0
(−1)j

(

yi
j

)

e�Xi + � + j + 1
(e�Xi + � + j)2

)

]

The first partial derivative with respect to the unknown parameters could be written as follows:291

)ll
)�

=
n
∑

i=1

(

2Xi −
Xi

1 + e�Xi
)

+

∑yi
j=0(−1)

j+1(yi
j

)Xi(e�Xi+�+j+2)
(e�Xi+�+j)3

∑yi
j=0(−1)

j
(yi
j

) e�Xi+�+j+1
(e�Xi+�+j)2

(17)

292

)ll
)�

= )
)�

[ n
∑

i=1
log

(

� + yi − 1
yi

)]

+

∑yi
j=0(−1)

j+1(yi
j

) e�Xi+�+j+2
(e�Xi+�+j)3

∑yi
j=0(−1)

j
(yi
j

) e�Xi+�+j+1
(e�Xi+�+j)2

(18)

The first part in Eq.(18) could be re-written as follows (Klugman et al., 2012; Tajuddin et al., 2020):293

)
)�

n
∑

i=1
log

(

� + yi − 1
yi

)

=
n
∑

i=1

yi−1
∑

m=0

1
� + m

(19)
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As a result, the partial derivative of the log-likelihood with respect to � is given as:294

)ll
)�

=
n
∑

i=1

(

yi−1
∑

m=0

1
� + m

)

+

∑yi
j=0(−1)

j+1(yi
j

) e�Xi+�+j+2
(e�Xi+�+j)3

∑yi
j=0(−1)

j
(yi
j

) e�Xi+�+j+1
(e�Xi+�+j)2

(20)

The above derivative equations could be simultaneously solved using numeric methods (gradient descend, Newton-295

raphson, etc.) in order to estimate the unknown parameters.296

Step two - Derive the expected value of posterior Poisson mean.297

The hierarchical representation of the NB-LGLMdefined in Eq.(1) does not involve the Poissonmean, �, parameter298

since � has already beenmarginalized out in the definition of the NB distribution. However, we can formulate the NB-L299

GLM as a functional of � by breaking down the NB distribution to a mixture of Poisson and Gamma distribution:300

Yi ∼ Poisson (�)

� ∼ Gamma (�, e−�i
1 − e−�i

) (21)

�i ∼ Lindley (�i)

�i = �i = e�Xi

Following from the above hierarchical representation, the pmf of the NB-L GLM could be re-written as a function301

of the Poisson mean, �:302

p (y|�, �) = ∫�
p (y|�)

(

∫�
p (�|�, �) p (�|�) d(�)

)

d� (22)

Clearly, the above expression is the pmf of a Poisson mixture distribution with mixing distribution as follows:303

p (�|�, �) = ∫�
p (�|�, �) p (�|�) d(�) (23)

Neither the mixing distribution itself, p (�|�, �), nor its posterior distribution, p (�|�, �, y), can be parameterized304

in closed-form. Hence, we can’t directly calculate the posterior expectation of the Poisson mean, E(�|�, �, y), in the305

same way we did in the case of the NB model. Instead, we can take advantage of a useful property of the Poisson306

mixture distributions documented by Karlis and Xekalaki (2005) and Willmot (1986). Suppose Y follows a mixture307

Poisson distribution with pmf p (x). Then, the posterior moments of any order of the Poisson mean, E (�r|X = x),308
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could be calculated as follows:309

E (�r|X = x) =
p (x + r)
p (x)

(x + 1)...(x + r) (24)

where, p (y) is the mixed Poisson pmf.310

We can use this property to calculate the posterior expectation of the Poisson mean when the NB-L model is being311

used. In the same way as before, let Y follow the NB-L distribution derived in Eq.(15). Then, the posterior expectation312

of the Poisson mean could be written as follows:313

E(�|y, �,�) =
p (y + 1|�, �)
p (y|�, �)

(y + 1) (25)

=
e2�X

1+e�X
(�+y+1−1

y+1

)
∑y+1
j=0(−1)

j(y+1
j

) e�X+�+j+1
(e�X+�+j)2

e2�X
1+e�X

(�+y−1
y

)
∑y
j=0(−1)

j
(y
j

) e�X+�+j+1
(e�X+�+j)2

(y + 1) (26)

The formula in Eq.(26) can be further summarized as follows:314

E(�|y, �,�) = A(y + 1)
A(y)

(y + 1) (27)

where, A(y) = ∑y
j=0(−1)

j(y
j

) e�X+�+j+1
(e�X+�+j)2 =

∑y
j=0(−1)

j(y
j

)�+�+j+1
(�+�+j)2315

Eq.(27) can be used to estimate the posterior mean of � without knowing any information about the mixing distri-316

bution or to solve for the expectation definition itself. The proposed EB formula is comparable with the famous EB317

formula derived for the NBmodel indicated in Eq.(13). Finally, we need to incorporate the MLEs, �̂ and �̂, in Eq.(27).318

The resulting value is the desired EB expected crash value for the NB-L model. As observed, it does not involve any319

intensive computation (like the FB method) or solving any complex integral. The next sections describe the dataset320

used for empirical evaluation of the proposed EB framework as well as the implementation details.321

4. Data description322

In the previous section, the derivation of the expected crash value using FB and EB frameworks was discussed for323

the NB-L GLM. In order to examine the developed FB and EB frameworks, this study used two datasets. Both Vir-324

ginia (2014-2019) and Texas (2014-2019) datasets represent the crash statistics of the non-federal aid system (NFAS)325

roadways discussed in Khodadadi et al. (2021) and Das et al. (2021). NFAS roadways are typically characterized by326

lower volumes and lower crash frequency in comparison with other roadway functional classifications (Khodadadi327

et al., 2021). Consequently, many NFAS segments experience zero crashes. Further, there are a lot of missing data in328

many roadway characteristics (e.g., shoulder width) that could potentially be used as predictors. Therefore, a limited329
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Table 1
Summary Statistics of datasets

Dataset Variables Min Max Average Standard Deviation

Texas
Number of crashes 0 15 0.86 1.65

Average 5-years AADT (vpd) 43 1166 313.8 253
Segment length (miles) 0.10 4.41 0.96 0.93

Virginia
Number of crashes 0 8 2.01 2.09

Average 5-years AADT (vpd) 163 5180 694 625
Segment length (miles) 0.13 5.67 1.35 1.08

number of variables were available to use in the generalized linear modeling framework. However, as the emphasis330

of this study is to assess and compare the developed framework, using fewer variables is not an issue. The summary331

statistics of both datasets are provided in Table 1.332

5. Modeling results333

In this section, the modeling results for both NB and NB-L GLMs are presented, then the proposed EB procedure334

for NB-L GLM is examined. First, the EB and FB estimates of the expected crashes were compared to generally335

validate the proposed EB method and show how well the EB estimates mimic the FB estimates. Then, the EB and FB336

estimates were used in site ranking analysis to determine how similar the produced ranks and identified hot spots were.337

5.1. Crash prediction models338

The NB and NB-L GLMs were developed for each dataset. For each model, only the AADT and segment length339

were included as contributing covariates. It should be noted that as the models are developed using the same functional340

form and compared using the same dataset, therefore, as noted earlier, the omitted variable bias would not be an341

issue. Also, as discussed before, this study aims to develop EB estimates for the expected crash values and explore342

whether they approximate the FB estimate properly. Including more variables might enhance the predictive models’343

performance; however, it will not affect the underlying theoretical framework of deriving EB estimates.344

For each GLM, Full Bayesian and maximum likelihood estimates were calculated. We employed the MCMC345

method using an open-sourced R package, called "RJAGS" (Plummer et al., 2003), to estimate the posterior of param-346

eters. This study assumed a non-informative gamma, and a non-informative normal distribution for the prior distribu-347

tion of �’s and � parameters, respectively. In total, three chains and 60,000 iterations were set up to ensure the MCMC348

convergence. The first 4,000 samples of each chain were discarded. Also, to reduce the potential auto-correlation349

among the random draws, every third sample of the rest was used for estimations of unknown parameters.350

The maximum likelihood estimates are needed in order to develop the EB estimates. Unlike the NB distribution,351
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Table 2
Modeling results for Virginia dataset

Variables NB GLM NB-L GLM
FB estimate (s.d.) MLE FB estimate (s.d.) MLE

Intercept (�0) -3.48 (0.22) -3.47 7.86 (0.36)∗ 8.27∗
Log (AADT) (�1) 0.51 (0.03) 0.51 -0.51(0.04)∗ -0.53∗
Length (�2) 0.57 (0.02) 0.58 -0.60 (0.03)∗ -0.59∗
� 3.94 (0.42) 3.87 75.07 (14.74) 96.63
DIC 8301 7135
WAIC 6859 6630
MAD 0.89 0.86
Log-likelihood -3119 -2888
* The estimates for the NB-L GLM do not carry information regarding the causal association of covariates and crashes
(see discussion below)

the NB-L is not a part of natural exponential family distributions. Hence, its log-likelihood function is not strictly352

concave. Numerical approaches equipped with proper initial values are needed to approach the global maximum353

point. Due to the significant sensitivity observed among the NB-L partial derivative equations and the initial values,354

a meta-heuristic genetic algorithm, together with a gradient descent approach, was utilized to ensure convergence to355

the global maximum point. For this purpose, the "GA" package in R (Scrucca et al., 2013) was used to solve the356

optimization problem. A total of 200 iterations with 500 initial populations were considered to maximize the objective357

function. A gradient descant approach was also employed in each iteration of the genetic algorithm to locally search358

for better estimates and further enhance the maximization process.359

The FB estimates and MLEs for the Texas and Virginia datasets for both Nb and NB-L GLMs are summarized in360

Table 2 and Table 3, respectively. Three performance measures, namely Deviance Information Criteria (DIC), Mean361

Absolute Deviance (MAD), and Widely Applicable Information Criteria (WAIC) were used for model comparisons362

(Lord et al., 2021). WAIC was developed by Vehtari et al. (2017) and it appeared to be a robust alternative for DIC in363

the Bayesian framework (Watanabe and Opper, 2010; Khodadadi et al., 2021). All the performance measures showed364

that the NB-L models fit the data better than the NB models. These results were expected since both datasets were365

characterized by a large number of zeros and high skewness (the domain under which the NB-L model performs better366

than the NB).367

As indicated in Table 2 and Table 3, the signs and magnitudes of estimates are different across models. This issue368

could be accredited to the particular representation of the NB-L model used in this study. As opposed to the NB model369

where the mean function has a log-linear association with covariates, the mean of the NB-L model has a non-linear370

relationship with covariates. Consequently, the magnitude and sign of the estimates do not necessarily represent the371

causal relationship between covariates and crash frequencies. This issue and its associated limitations are covered in372

the Discussion section further below.373
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Table 3
Modeling results for Texas dataset

Variables NB GLM NB-L GLM
FB estimate (s.d.) MLE FB estimate (s.d.) MLE

Intercept (�0) -5.49 (0.12) -5.49 8.00 (0.28)∗ 7.21∗
Log (AADT) (�1) 0.80 (0.02) 0.79 -0.73 (0.02)∗ -0.68∗
Length (�2) 0.66 (0.02) 0.66 -0.60 (0.02)∗ -0.61∗
� 1.07 (0.04) 1.07 17.83 (3.16) 10.71
DIC 26155 22471
WAIC 21031 20761
MAD 0.45 0.44
Log-likelihood -9023 -8847
* The estimates for the NB-L GLM do not carry information regarding the causal association of covariates and crashes
(see discussion below)

5.2. Expected crash values374

Using the above modeling results, we attempted to calculate both FB and EB expected crash values. Estimating375

the FB expected values involves multiple random sampling steps, which are doable using any software developed for376

MCMC analysis. However, the MCMC analysis requires the model tree defined using the standard distributions. The377

Lindley distribution is not a standard distribution but can be re-parameterized as a two-component gamma mixture378

(Zamani and Ismail, 2010):379

� ∼ Lindley(�) ≡ 1
1 + �

Gamma(2, �) + �
� + 1

Gamma(1, �) (28)

To calculate the EB expected crashes, we merely plugged in the MLEs (i.e., �̂, �̂) from Table 2 and Table 3 in the380

EB formula developed in Eq.(26). The EB expected crash value for site i would be as follows:381

E(�i|yi) =
A(yi + 1)
A(yi)

(yi + 1) (29)

where, A(yi) = ∑yi
j=0(−1)

j(yi
j

) e�̂X+�̂+j+1
(e�̂Xi+�̂+j)2

382

Results from both methods were observed and compared to see whether EB estimates properly approximate the FB383

estimates. The absolute difference between the estimates for the NB and NB-L models are plotted in Figure 1. These384

violin plots show the extent to which the FB expected values and their approximated EB counterparts are different. As385

seen, the difference between the mean of the expected values are quite small for both models; this indicates that the386

proposed EB formula for the NB-L GLM can accurately approximate the FB procedure, thus avoiding the demanding387

MCMC analysis.388

However, the difference between the EB and FB expected values were larger for the NB-L in comparison to those389
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Figure 1: The absolute difference between the EB and FB estimates of the expected crashes

of the NB model. This issue is fully covered in the discussion section. Even though the difference between the EB and390

FB estimates seem relatively larger for the NB-L models, the authors observed that the relative differences will not391

exceed 25% for sites with crash experiences. This indicates that the EB and FB estimates are close, and it is anticipated392

that the EB estimates will be adequate for safety applications.393

5.3. Application in site ranking394

The empirical results in the previous section showed that the EB estimates of the expected crash values are appro-395

priate alternatives to the FB estimates. Both the absolute and relative differences between the EB and FB estimates396

of expected crashes were small, indicating that the EB estimates well approximate their FB counterparts. However,397

sometimes the order of the expected crash values is of interest rather than the magnitude itself. In site ranking studies,398

the aim is to sort the study sites in decreasing order of their evaluated crash risk (expected crash value). As a result,399

this study examined the application of the proposed EB framework for the NB-L GLM in site ranking.400

In order to assess how a ranking criterion performs, a reference ranking is needed as the basis for the comparison.401

Several studies found Posterior ranking criteria to be a better alternative to integer ranking when the model is imple-402
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Table 4
Site ranking results

Dataset
Risk

Evaluation Unordered Ranked Groups
Criteria 1-10 1-20 1-50 1-100 1-200 1-500

Texas NB-L FB 10/10 ∗ 20/20 50/50 100/100 200/200 500/500
NB-L EB 9/10 20/20 46/50 97/100 190/200 486/500

Virginia NB-L FB 10/10 19/20 49/50 99/100 196/200 498/500
NB-L EB 8/10 15/20 49/50 95/100 196/200 492/500

*Posterior expected ranking is the reference ranking criteria

mented as a Bayesian framework (Laird and Louis, 1989; Miaou and Song, 2005; Liu and Sharma, 2018; Shen and403

Louis, 1998). Laird and Louis (1989) observed that the posterior distribution of ranks carries more information than404

the integer rank that is usually assigned to the parameter mean. The Posterior ranking criterion takes into account all405

posterior simulations for each site’s crash risk (not only the posterior mean), and results in a ranking for each simulation406

run. Eventually, by taking the average of the simulated ranks for each site, the posterior expected rank is achieved. This407

study assumed the posterior expected ranks as the reference ranks in order to compare the ranking criteria produced408

by FB and EB expected crash values for the NB-L model. The first 10, 20, 50, 100, 200, and 500 top ranked sites409

were identified for each ranking criterion. Table 4 shows the number of sites that appeared in both the ranking criteria410

being evaluated and the reference ranking (posterior expected ranks). As seen in both datasets, the hot spots identified411

by the EB approach are quite similar to those identified by the FB approach. Similarity of the ranks indicate that the412

proposed EB approach can be a proper alternative to the FB approach not only in crash prediction, but also in hotspot413

identification. Site ranking is the only safety analysis evaluated in this study; however, any other type of safety studies414

that use the long-term crash mean can benefit from the proposed EB method.415

6. Discussion416

Modeling results from previous works and the current study indicated that compared to the traditional NB model,417

the NB-L model provides a superior fit when analyzing crash datasets with excess zero observations. Consequently,418

the NB-L has a better performance in evaluating the crash risk associated with each site. However, the NB-L expected419

values were only available using the FB approach, which could be difficult to compute for large datasets. This study420

introduced the EB framework to approximate the FB estimates of the NB-L model. Results from the previous section421

showed that the proposed EB framework for the NB-L can properly approximate the underlying FB procedure, so it422

can be used for analyses that require expected crash values (e.g., site ranking, before-after analysis). Some interesting423
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findings, results, and limitations are discussed below.424

As indicated in Table 2 and Table 3, neither the signs nor the magnitudes of the estimated coefficients are com-425

parable between the NB and NB-L models. This issue can be attributed to the way the mean function is structured.426

The NB model in this study is parameterized by its mean, �, and overdispersion parameter, �. The mean function is427

assumed to have a log-linear relationship with the site characteristics, (i.e.,X) through the regression coefficients (i.e.,428

�). As a result, the coefficients are directly related to the mean crashes so, their magnitude and sign carry information429

about how and to what extent each covariate affects the crash frequencies. However, the NB-L model is parameterized430

differently. Geedipally et al. (2012) introduced two different parameterizations for the NB-L GLM. The first one uses431

the NB formulated by mean and overdispersion parameter where each site-specific mean value is multiplied by an432

adjustment factor (or as indicated in the original paper, frailty term), �:433

Y ∼ NB (y; ��, �)

� ∼ Lindley (�) (30)
� = e�X

This parameterization is easy to interpret, and given that E(Y ) = �, the regression coefficients are directly related to434

the mean response. This representation, however, is not available in closed form and hence, cannot be used in the EB435

framework proposed in this study. Instead, we used the second parameterization, which is available in closed form:436

Y ∼ NB (y; p, �)

− ln (p) ∼ Lindley (�) (31)
� = e�X

This parameterization, which follows the original NB-L parameterization discussed in Zamani and Ismail (2010),437

links the site characteristics to the Lindley parameter, �, not the mean. The mean of this parameterization can be438

written as follows (Zamani and Ismail, 2010):439

E(Y ) = �
(

�3

(� + 1)(� − 1)2 − 1

)

(32)

As seen in the above definition, the mean response is a non-linear and non-invertible function of regression co-440

efficients and overdispersion parameter. Consequently, the signs and magnitudes of the regression coefficients in the441

second parameterization do not necessarily show the causal relationship between the covariates and crash frequency.442
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To put it concisely, the proposed EB framework and the NB-L representation we utilized in this study (indicated in443

Eq.31) are only applicable when the expected crash values are of interest. The expected crashes can then be used in444

various safety-related studies such as hot spot identification or before-after analysis. However, if the goal is to deter-445

mine the underlying relationship between the crash frequencies and contributing factors, the other parameterization446

of the NB-L model indicated in Eq.(30) should be employed (see Khodadadi et al. (2021); Geedipally et al. (2012);447

Shirazi and Lord (2019); Shirazi et al. (2016)).448

In addition, we observed that the log-likelihood function of the NB-L model behaves unpredictably when large-449

valued parameters or large inputs are involved. This issue can be attributed to the summation term existing in the450

NB-L closed-form expression,∑y
j=0

(y
j

)

(−1)j e
�X+�+j+1
(e�X+�+j)2 . This summation part results from the following substitution,451

(1 − e−�)y =
∑y
j=0

(y
j

)

(−1)je−�j , which was used in Zamani and Ismail (2010), and Khodadadi et al. (2022) to derive452

the pmf of the NB-L distribution. This part outputs small negative values when large y’s or large-valued parameters453

are input. Consequently, proper initial values are required when maximizing the likelihood function to avoid large454

estimates and negative likelihoods, and ensure valid estimates and inferences.455

Furthermore, a larger difference between the FB and EB expected values was observed in the NB-L compared456

to the NB model. This issue can be attributed to two reasons. First, the NB-L likelihood is not strictly concave and457

hence, the global optimization is not possible or very difficult to get. Numerical approaches are needed to approach458

to the global maximum point as much as possible which eventually lead to a range of local maxima and a range of459

estimates. Unlike in the case of the NB model where a single set of MLEs achieve the global maximum, in the NB-L460

model, a range of local estimates would be achieved whose accuracy depend of the initial values. Therefore, the MLEs461

and the FB estimates are quite different for the NB-L model (see Table2). This difference between the MLEs and FB462

estimate will result in the different EB and FB estimates of the expected values. Another potential reason could be463

the bias-variance trade-off. Due to the flexible structure of the NB-L model, it tends to output less-biased and hence,464

high-variance results. High variability of the NB-L model is mirrored in high variance of the expected values.465

Aside from the high-variability of the NB-L model, the absolute and relative differences showed negligible values.466

Similarity of the ranking from the EB and FB estimates also confirmed that the EB estimates will be adequate for safety467

applications. The proposed framework will be specially useful in situations where the traditional NB models are not468

flexible enough (e.g., abundance of zeros in the data or high skewness), or output biased results (e.g., data with low469

sample mean).470

7. Summary and conclusions471

Even though there is rich literature on the advanced predictive models in traffic safety, little has been done to extend472

their application to other roadway safety tasks. The NB-L model has been proposed for sparse count data modeling473
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and, as indicated in several studies, provides superior performance compared to the common NB model used in traffic474

safety. However, its application has not been examined in other roadway safety tasks.475

Expected crash values estimated from the crash predictionmodels are themain evaluation tool in safety analysis and476

represent the long-term risk associated with a roadway entity. This study proposed an EB framework to approximate477

the underlying FB method and derive the expected crash values for the NB-L model. The derived expected crashes478

can be used in various safety-related studies (e.g., hot spot identification, before-after analysis). The results showed479

that the proposed EB framework is able to estimate expected crashes with comparable precision to the FB estimate but480

with much lower computational costs. The proposed framework was further examined in site ranking analysis. We481

observed that ranks produced by the EB estimates were similar to those of FB estimates, indicating that the proposed482

framework can be safely employed in other highway safety tasks such as hot spot identification analysis.483

The EB approach introduced in this study can be utilized in any type of analysis that requires access to the expected484

crash values. The resulting EB expected crashes take advantage of the probabilistic structure of the FB paradigm while485

avoiding its time-consuming computational efforts. For future studies, a similar framework as introduced in this study486

can be used to develop an EB method for other advanced predictive models in traffic safety. Also, further work should487

be performed to validate the application of the framework in other safety-related analyses such as before-after analysis.488
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